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Aimraet~This study m i n e s  the nature of the one-dimensionul mean motion description for two- 
phase flows. It is conjectured that the unstable wave growth in a streaming two-phase flow with 
unequal phasic velocities is a result of the failure to model the correlations of the fluctuating vdodty 
components in the momentum equations. A general functional form for these vdoclty correlations 
is derived based upon invariance and dimensional arguments. Some speculative closure models using 
this ~ o n a i  form are derived and it is shown that reasonable forms of this closure model do in 
fact lead to a stable mean motion description. 

INTRODUCTION 

In many areas of two-phase flow it is desirable to have model equations that describe the 
behavior in terms of quantifies averaged in tither space or time. There have been many 
formally exact derivations of these averaged equations (Ishii 1975; Delhaye 1979). Like their 
single-phase turbulent counterparts, however, the real difficulty lies in choosing the appro- 
priate closure formulas for each of the many interactions and fluctuation terms introduced 
by this formal averaging process. 

The standard closure assumptions neglect the terms representing the correlations of 
fluctuating v d o d t y  components in the mean momentum equations. In the single-phase 
turbulent counterpart these are the Reynolds stress terms. It is well known that appropriate 
closure models for the Reynolds stress terms is the essence of the problem of obtaining a 
realistic mean motion description of turbulent flows. In particular, if one were to make the 
assumption that the Reynolds stress terms could be neglected in the mean flow equations 
then the mean flow equations would exhibit the same instability as was present in the local 
laminar flow equations. If the Reynolds stress terms were neglected the very purpose of 
forming the mean flow equat ions-- to  average out the unstable local f low--would  not have 
been achieved. 

It is well known that the standard closure assumption for the two-phase flow equations 
neglecting the correlations of fluctuating velodties results in average mean flow equations 
that manifest Hdmhol tz  flow instabilities. By analogy with the turbulent flow situation this 
manifestation of the local Helmholtz instability in the mean flow equations may be the 
result of a failure to include an appropriate model for the fluctuations of velocity. 

These instabilities in the mean flow equations have usually been treated in the context 
of a characteristic analysis and related to the ill-posed nature of the mean model equations. 

In this paper we will give evidence to support the conjecture that the fundamental 
problem giving rise to the mean flow instabilities in two-phase flow is not primarily related 
to the short wavelength response (characteristics) but may be instead a result of the failure 
to model the correlations of the velocity fluctuations in the mean momentum equations. 

2. THE BASIC MODEL EQUATIONS 

We begin with the mean motion equations for two-phase flow as derived by Delhaye 
(1979) and lshii (1975). These equations formally describe a very wide class of possible 
flows. For this study we shall make certain simplifying assumptions which reduce this 
general formulation to one that is more manageable, yet one that retains the basic physics 
that results in the well known two-phase flow instabilities (Rarnshaw 1978; Hetsroni 1982; 
Gidaspow 1974). 
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First, we consider phases for which both fluids may separately be assumed incom- 
pressible. Second, we consider flows in which thermal processes are unimportant, that is, 
flows with no heat or mass transfer between the fluids. Third, we shall assume that viscous 
forces may be neglected in the bulk phases. In addition, we will primarily be concerned 
with stratified flows. At the interface where there is relative motion a boundray layer must 
develop in which viscous forces are present. But it is felt that the existence of this high 
shear layer will primarily affect only the high-frequency short wavelength phenomena. 
Although viscous effects will generally be neglected we will keep in mind that the inclusion 
of such effects will modify the short wavelength dispersion analysis.* 

The spatially averaged model equations for the one-dimensional situation are rigorously 
derived in appendix A. These averaged equations become: 
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where v and P represent the mean phasic velocity and pressure, p is the constant phasic 
density and a represents the void fraction. Pol and Pu  represent the average phasic interface 
pressures, v~ and v~ represent the deviation of the local velocities from their mean values, 
v ~v ~ and v ~v ~ represent the averages of the deviations squared. In [1] through [5] the shear 
drag terms at the wall and interface have been neglected. If these terms are included and 
modeled with algebraic equations the resulting friction terms, because of their algebraic 
nature, primarily affect long wavelength phenomena. The arguments used in the following 
development concern the medium wavelength response of the above equations so these 
frictional terms are neglected. A differential model for these drag forces taking into account 
transient drag forces (commonly called added mass effects) has been studied (Lyczkowski 
et  aL 1978). For the stratified flow situation these transient drag forces are extremely small 
and the analysis in Lyczkowski et  aL (1978) shows that their inclusion does not remove 
the basic instability present in [1] through [5]. For the above reasons the interface and wall 
drag terms are neglected in [1] through [5]. 

The usual two-phase flow equations are obtained from the above equations by making 
the following additional assumptions: 

Assumption 1 Pal ~ P~ --  PL ~-- P u  (~P) , [6] 

Assumption 2 V LV ' "~__ O , V'~V'~ "~  0 [7] 

When these two assumptions are invoked the resulting system predicts unstable growth for 
all wavelengths in a simple streaming flow with v~ =/= vL. 

3. THE PURPOSE OF AVERAGING 

The purpose of averaging the local flow equations quite simply put is to remove the 
local flow fluctuations and obtain model equations representative of the mean flow behavior. 
If one wanted to follow the local flow the unaveraged equations should be used. This local 

* See further comments in section 3. 
: Although a special averaging process has been used to obtain these model equations the form of the model 

equation is basically the same for all types of averaging processes, i.e. spacial, time, space-time, ensemble. Later 
in this paper when we need to evaluate averaged quantities from local variables we will use spacial averaging for 
the derivation although similar results can be obtained using other forms of averaging. 
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problem is even more complex in two-phase flow with the multiple internal interfaces than 
it is in singie-phase flow. Let us consider two examples to clarify these concepts. 

Example 1-- Two-phase flow 
Consider the classical Helmholtz problem for two fluids in plane motion confined 

between plates a distance H apart. This two-dimensional flow can be exactly analyzed for 
our case, i.e. incompressible, inviscid flow without mass transfer. A summary of this analysis 
is contained in appendix B. As can be seen from the dispersion relationship [B-5] this exact 
analysis predicts unstable wave growth (complex ¢o) for all wavelengths when vo =f= vL. The 
growth rate becomes unbounded as the wave number k ~ ~ ,  which makes this problem ill- 
posed (Richtmeyer 1967). This ill-posed character of the two-dimensional exact solution 
can be removed by the inclusion of any physically realistic model that adds a restoring or 
damping force for small wavelengths. The inclusion of surface tension (Ramshaw 1978) or 
viscosity (Richtmeyer 1967) adds such a term to the equations and results in a well.posed 
Helmholtz problem.t If we assume that such terms have been included in the analysis, 
[B-5] will still predict instabilities for all but the shortest wavelengths. The Helmholtz 
problem is a linearized perturbation analysis that predicts the local motion of small dis- 
turbances superimposed on the parallel streaming flow. In reality, as the wave growth 
predicted by this two-dimensional analysis proceeds in time nonlinear effects begin to 
manifest themselves and the growing waves are stabilized with some resulting bounded 
amplitude. This motion may be that of an organized wave motion (solitary waves) or 
unorganized wave motion (turbulent wave height fluctuations). Both are observed in practice 
(Tritton 1977). In either case the organized/unorganized wave motion with wavelength of 
the order of the channel height H cannot be followed with any accuracy using averaged 
one-dimensional equations. In fact, the very purpose of forming the averaged equations 
(instead of using the local multidimensional equations) was to eliminate the fluctuations 
with wavelengths of order H and to follow only the mean motion. 

A brief comment is in order at this point to define the relative terms short, medium 
and long wavelength. For our discussion short wavelengths are of the order of the channel 
height, i.e. wavelengths less than three or four H. The control volume used to develop the 
averaged mean flow equations is considered to have length H (see appendix A). Such short 
wavelength phenomena are clearly not modeled in the averaged equations. Medium wave- 
lengths are of the order 4 to 15 times the channel height. It is expected that wavelength 
phenomena of this order should be reasonably modeled by our mean motion equation. 
Wavelengths larger than 15-20 H will be considered long. For our incompressible zero 
mass transfer situation the relationship between wavelength and frequency can be made 
quite explicit. This relationship is discussed in appendix A. 

Example 2--Multidimensional single phase 
An analogous situation holds in single-phase multidimensional flow at the onset of 

transition from laminar to turbulent flow. In this case the local linearized equations predict 
a growing instability for some finite wavelength. This instability eventually gives rise to 
unorganized wave motion (turbulence). If one wants to develop model equations for the 
mean motion of a turbulent flow field he must average the local equations. It is very 
important in this averaging process to include a model for the fluctuation terms v~v'j 
(commonly called the Reynolds stress terms). In fact, this is the essence of obtaining correct 
mean motion equations. If (as no one does) the velocity correlations, v[v'j, had been neglected 
in the closure of the mean motion equations then the averaged equations for the mean 
motion would still contain the same instability as was present in the local equations--a 
totally unacceptable procedure. 

The multidimensional turbulent example is quite analogous to the stratified flow ex- 
ample if we remember that the Helmholtz problem with v~ =f= vL can be thought of as a 
viscous flow problem with a shear layer of extremely small width d (the interface) and 
extremely large transverse velocity gradients. If the Helmholtz problem is examined from 
this point of view then the linearized stability analysis in appendix B is somewhat parallel 

t The analysis cannot be carried out exactly for viscosity but the exact solution including surface tension can 
be obtained; see Ramshaw (1978). 
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to the stability analysis performed for the onset of turbulent flow using the inviscid form 
of the Orr-sommerfeld equation (Schlichting 1958). Although the inviscid Orr-sommerfeld 
dispersion equation cannot be used to obtain a critical Reynolds number for the onset of 
turbulence, it is possible with this type of analysis to answer the question as to whether a 
given laminar flow is stable or not (Schlichting 1958, pp. 388-389). Using the inviscid 
stability equation [B-4] for the Helmholtz problem then says that the instability predicted 
for any vc =/= VL is an analysis for the onset of turbulent (organized or unorganized) wave 
motion. 

The above discussion leads one to believe that a proper averaged form of the local 
flow equations for two-phase flow must contain a model for the velocity correlations, 
v'ov'~ a n d  ' ' v Lv L , if one wants to properly follow the mean motion. If one neglects the 
v'~v'~ and v'Lv~ terms in [3] and [4] then it is expected that the averaged mean flow equations 
will still contain the same flow instabilities that were present in the local equations before 
the averaging was done. This is exactly what is observed in the averaged two-phase flow 
equations if the velocity correlation terms are neglected. This instability in the mean two- 
phase flow equations for a uniform streaming flow is well known. 

Before we proceed with our closure assumptions for v'ov'~ and ' ~ vLv L we want to make 
a few remarks about the closure assumptions needed for pressure. If we examine [1]-[5], 
neglecting the velocity fluctuations, then we must make some assumptions for the pressure 
terms. If assumption 1 is made then it is well known that the basic averaged two-phase 
flow equations exhibit the same Helmholtz instability as was exhibited in the local two- 
dimensional unaveraged equations. 

Some authors have made different assumptions regarding the pressure terms. Ramshaw 
& Trapp (1978) have included a surface tension, or, contribution to give a model for 
Pc1 - P u  (with Pc = Pol and PL = Pu). Their analysis clearly shows that the local Helmholtz 
instability still remains in the averaged equations for all but the shortest wavelengths where 
o" removes the unbounded growth. Hence this pressure assumption also leads to averaged 
model equations in which the local Helmholtz instabilities remain.That is to say, the very 
purpose for which averaging is generally performed (to remove local fluctuations and follow 
the mean motion) was not achieved with this system. This was realized in Ramshaw (1978) 
where the authors state: "In the present paper, attention has been implicitly restricted to 
the problem of obtaining a satisfactory system of equations to describe the Ins tantaneous  

motions in separated two-phase flow," and "[the analysis]...would clearly not apply if the 
objective were to obtain an equation system which does not attempt to describe small 
amplitude disturbances correctly, but seeks instead to describe the average behavior of a 
'fully developed' two-phase flow in which apparently random motions reminiscent of tur- 
bulence appear to be superimposed on a slowly varying deterministic mean motion." 

A different assumption for the phasic pressures has been made in Ransom (1984). Here 
the authors use transverse momentum considerations (leading to additional differential 
equations or algebraic conditions) to relate PL to Pc. If a linearized stability analysis of the 
resulting model equations is performed one again finds that except for small wavelengths 
the local Helmholtz instability is still manifested in their averaged mean motion model 
equations. Hence this system again fails to model the mean behavior but retains the instability 
responsible for the local fluctuations that were supposed to have been averaged out. 

A model for the phasic pressures can be developed which includes the effect of a 
transverse gravity head. If such a model is included then one obtains the standard single 
phase pressure terms plus a derivative term proportional to o a / a x .  It is well known that 
such a tern will stabilize a streaming flow with VL =/= VC for moderate values of the velocity 
difference. This effect is clearly not present in a vertical flow. Hence there are several regimes 
(larger relative velocity differences or vertical flows) where the inclusion of gravity head 
effects fails to give a model that manifests stable mean motions. It should be noted that 
for larger relative velocities the above-mentioned gravity head model fails to stabilize any 
wavelengths. In particular short wavelengths that should have been filtered out by the 
averaging process still remain and manifest themselves in the mean motion description. 

This extended digression concerning the different assumptions that have been made 
regarding the pressure terms in [1]-[5] has been included to show that the basic problem 
(local flow instabilities manifesting themselves in the averaged mean motion equations) is 
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not always removed by better pressure approximations. This is further evidence to support 
the conclusion that the proper mean motion equations will only be obtained if a realistic 
(nonzero) model for vovo' ' and VLVL' ' is included in the averaged mean motion equations [3] 

and [4]. 

4. THE REQUIRED FORM OF THE CLOSURE TERMS 

A model for the velocity correlation terms in [3] and [4] is extremely difficult to derive. 
In fact, it is probably as difficult as was the development of models for the Reynolds stress 
terms in single-phase turbulent flows. In the Reynolds stress models it is relatively easy to 
convince oneself that a Reynolds stress proportional to the mean shear gradients is a 
reasonable first approximation t. This assumption can be motivated by physical arguments. 
The more difficult problem is to determine the proportionality "constant," i.e. the eddy 
viscosity. Several different models have been proposed and used for the eddy viscosity 
(SchJichting 1958). In this section we would like to motivate a model for the velocity 

' ' v' V' that appear in the mean flow equations [3] and [4]. correlations, v av ¢ and L L ,  
In the local two-dimensional Helmholtz problem the local instability is generated by 

a mean relative velocity v~ - VL that is nonzero. The local instability is nonexistent if 
vG - VL is zero. Since there are no mean gradients in the steady flow considered any algebraic 
closure model for ~ and ' ' VLVL must be a function of v~, VL, PO PL, aa  and possibly some 

t F P ¢ additional parameters characterizing the local scale. Now models for vavo and VLVL must 
vanish when va - vL equals zero. It can be shown by invariance arguments (Truesdell 1956), 
that v'~v'~ and V'LV'L can only depend upon va and VL in the combination (va - VL).These 
arguments alone require the modeling: 

vav  " ;  ' ' = - , V L V L = A % - - V D  2 [8] 

wherefo andfL must be dimensionless functions of (vo - VL)IVu, p~/PL,  a a ,  and (possibly) 
local scale parameters denoted by LS. Here vu is some representation of a mean velocity, 

say (aopovo + aLPLVL)/ (aopo + aLpL)  ~. 
Although the form in [8] is established by very simple invariance arguments it can 

also be motivated by more physical arguments parallel to those commonly used in turbulence 
modeling. In particular, if we think of the local Helmholtz instability as generated by a 
thin shear layer (of width d)  with a larage transverse velocity gradient then by analogy 
with the turbulent flow situation the velocity fluctuations may be assumed proportional to 
the velocity gradient at the interface. This gives for v'~v'~ 

F , f , { V ~ - - V , ~  
= ' [91 

where f ' a  is a function with the same arguments as f¢ and d represents the local scale, i.e. 
it corresponds to the L S  argument in fa .  Since v'cv'~ is nonnegative and v¢ - VL can be 
either positive or negative dimensional arguments applied to [9] require it to take the form 
shown in [8] with d absorbed in f¢ as LX 

With [8] established as the basic formulation for the velocity correlations we are now 
at a point in our development that parallels the multidimensional turbulent model for the 
Reynolds stress, 

- -  ( av---2 avJ I [10] 
v~v~ = • ~axj + axi /  

* All the algebraic closure models for turbulence use this assumption; Prandtls mixing length theory, Taylor's 
vortidty transfer theory, etc. We will only be considering algebraic closure model in this paper. 

: If we wanted to include the effects of the wall then invariance arguments would also allow dependence 
upon v~ and v~. For the inclusion of such effects in single phase pipe flow; see Slattery (1972). The nature of the 
problem is associated with the interface behavior and the shear instability generated there so wall effects have 
been neglected. 

IA more appropriate value may be (aop, v, + aLpov¢) / (aopL + aLpc) which is the speed at which 
the local Hdmholtz waves travel, i.e. the kinematic wave speed. 
HF 12:2-H 
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We have the basic form for the velocity correlations, proportional to (v, - vL) 2, but we 
have two unknown "eddy viscosities" fo  and f v  It is felt that a valid form for these 
dimensionless functions could only be firmly established by hypotheses backed up by 
experimental measurements or numerical experiments.* As in multidimensional turbulent 
flow there may be several models for f~ and fL that give basically the same mean motions. 
Since the kinematic wave speeds in the mean equations including the model in [8] will 
depend upon fo  and fL it is felt that f~ and fL could be determined by experiments on the 
mean motion propagation properties without many detailed local experimental measure- 
ments. Although this paper is not experimental in nature, approximate forms for fo  and fz 
will be suggested based upon physical/analytic considerations. 

5. SOME SPECULATIVE CLOSURE MODELS 

A. A closure model using the local Helmholtz velocities for a guideline 
If we return to the local Helmholtz instabilities analyzed in appendix B, we can make 

the plausible argument that these instabilities grow in time but become bounded by non- 
linearities. One might expect that the nonlinearities present in this bounded wave motion 
would give rise to small corrections to the linearized wave profiles seen in appendix B. In 
particular we could form vavo' ' usmg" the profiles in appendix B to give a first estimate for 
f c  and f v  This is now done. 

This development will be carried out for the gas phase. The final parallel results for 
the liquid phase will then be recorded. The plan is as follows: 

1. Use the local wave motion in [B-l] to form v'~v'~ for a particular wave number k. 
2. Average the local fluctuating velocity products over a spacial region the length of 

which is 2~r / k. 
3. Write the averaged v'~v'o in the form displayed in [8]. 
4. Examine the resulting form of the coefficient of (vG --vz)  2 to obtain a first approx- 

imation to f~. 
From [B-l] it is easy to see that v ~v ~ for any k is 

I cosh[k(y-Ha~)]  12 

Averaging v'av'~ in [11] over the region O<y<Ha~, xo<_x<xo + 27r/k, gives 

vbvb = ~ e ±~1' P* ( v ~ -  vL) 2 , 
2a~ (p~ + p~) 

[12] 

where cto is the initial wave height disturbance, o l  is the complex part of ¢o in [B-5] and 

P* = Pz coth (kH~L) , P~ = Pc coth ( k H a n )  [13] 

Because v'cv'c is derived from the unstable local motions the velocity correlation in [12] 
manifests the e + ~ "  growth factor. We have assumed that the nonlinearities eventually make 
this term bounded with small resultant changes in the velocity profiles. This being the case 
we have for fc  

f~ = a~ P* , [14] 

where A~ is some dimensionless function of the same arguments as f¢.  
We have argued throughout the whole paper that local fluctuations with wavelengths 

of the order of the channel thickness H must be averaged out in the mean flow equations. 

t The state of the art relative to numerical simulations of stratified flows with interface tracking makes a 
numerical determination of ~ very reasonable at the present time. 
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This implies that fc  in [14] should be used with k of the order 2¢r/H. Using [14] we have 

for fc  

fG = A~ PL coth (2~'aL)( PL coth (21ra L) + Pc coth (2~ra6)) 
2ct~ 

[15] 

when k = 2rr/H. The void fraction dependence in [15] is complicated by the coth functional 
dependence. We can approximate this dependence by considering two special cases: (1) 
ctc = aL = l/z, and (2) at-- '0, ctL-~ 1. For case (1) we obtain from [15] 

.+{ P,. + 
f c  = 2 a +  ~PL + P c /  

[16] 

For the limiting case (2) we have coth(2~'aL) -----coth(2~') ~.  1 and coth (2~'ao) 
1 / 2~rac; hence from [ 15] we obtain 

A ~ (  2¢rctcp_ k ) 
fc = 2a~ ~ 2~ra ~p L + P c 

Remembering that we are considering the limiting case a c "  0 this reduces to t 

1r ( aopLI [17] f c =  aca-   I 

Now a general form for fc  that includes both of these cases, i.e. [16] for aL = a c a n d  [17] 
for ao small, is 

Ac(  aopL ) [181 fc = a--~a xaGpL + a£pc/ ' 

where the 1/2 or ~ factor has been absorbed in the void fraction dependence of Aa. 
This procedure then gives the following models for the velocity correlations in 

[3] and [4]: 

PcPz. a c p c  v'cv'G = Ac  ~ (vc - vD :2 , [191 

, , _  PcPL aLpLvcvL-- AL ~ (Vc - eL) ~ , [20] 

where PM = acpL + aLpc and the A's are dimensionless functions of (vc - vL)/v~, Pc~ 
PL, a a ,  and possibly LS. If v~v~ and v'zv'L are bounded for all void fractions, as in reality 
they must be, then from [19] Ac must vanish as at-- .0 and from [20] AL must vanish as 
CtL-"O. If an alpha is explicity factored out of each of the A terms, i.e. Ac = acEc,  AL = 
aLEL, we then have 

I b v c O vG] 
acPc L--~-t + vc ~x-x ] 

° 1 ] + - -  aGEc( O~p L (v~--vL) 2 
ax ~ PM / 

oP 
+ a c - - = O  

bx 

[21] 

+The a~  dependence in [17] in the denominator implies that A~ must have an aa depeadence of at least 
order one. 
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F O VL O VL ] 
aL P, L-;-;- + Vf~x j 

+ -o~ ,~LN ~ - - ~ / %  - ~L) ~ + ,~  --+~ = 0 

[22] 

as the form of the momentum equations including an approximate model for the velocity 
fluctuation correlations. 

At this point we have given a tentative model for the fluctuating velocity terms. It is 
to be noted that this model involves two unknown functions E~ and EL. Hence, at this 
point we are still unable to analyze the character of the mean flow equations. An explicit 
form for the correlation functions E~ and EL will be suggested in section B, [28]. It wilt 
then be possible to perform a stability analysis for the mean motion equations. The resuh 
is contained in [29]. 

B. A further specification assuming stable mean motion equations 
Our whole analysis has been motivated by the fact that the averaged mean motion 

equations with a proper model for the velocity fluctuations should predict a stable mean 
motion without any manifestation of the local Helmholtz instability. To confirm this property 
of the mean motion equations one must perform a dispersion analysis on [1], [2], [21] and 
[22]. In this dispersion analysis we are examining wave propagation for large scale mean 
motion waves, not the local wave motions or tipples seen in the Helmholtz problem. 

Before proceeding some observations on the long wavelength behavior of the Helmholtz 
solution are needed. If we consider [B-5] for long wavelengths, i.e. for a ~ k H  and a L k H  
going to zero, then using coth(ctokH) -+ 1/(zokH and coth(aLkH) -+ 1/aLkH we obtain 
the dispersion relationship 

to --  (aopLVL + CtLpoV¢) d- (V6 -- VL____) ~ / _  Ct¢CtLp¢PL , [23] 
k p~ p~ 

for the propagation of long wavelength local disturbances. Let us think of the Helmholtz 
problem as an approximation to a streaming flow with two different velocities and a thin 
shear layer separating them. The Helmholtz analysis shows that the growth rate proportional 
to the complex part of to increases as the wavelength decreases. In reality viscous and/or 
surface tension effects eventually come into play at the very short wavelengths to mitigate 
the extreme short wavelength growth. 

For long wavelengths there will be little growth. If vM is defined as 

vM = a~p,vL + aL p~v~ [24] 
PM 

then [23] can be written as 

co = -- kv~ ± ikt~ l [25] 

The Helmholtz solution for any flow variable S then has the form 

S ~ S ~  i(2w/L) (x-VMO e -k- (2~t/Lt wit [26] 

This represents a wave of length L propagating with speed vM and small growth rate (for 
L large) of 2~rwz/L. 

Now for long wavelength motions, one expects the local Hdmholtz solution to properly 
reflect the properties of the mean equations except for the turbulent dissipation that is 
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present. If viscous effects are included this energy is dissipated into heat and removed from 
the mechanical motion at the shorter wavelengths. This being the case, we assume that for 
long wavelength motions the Helmholtz solution is a good approximation to the mean 
motion equations except for the small growth rate that would be "dissipated" in any mean 
motion description. One should then expect [23] without the small complex term, i.e. without 
the second square root term, to be an approximation to the dispersion relationship expected 
when the mean motion equations are analyzed. 

We now return to our mean motion equations [I], [2], [21] and [22]. Based upon the 
discussion above it seems reasonable to assume that the dispersion analysis of the mean 
motion equations will predict stable (real) roots for to with a real part near - kvM. To 
carry out this dispersion analysis explicit forms for EG and EL must be postulated. It can 
be shown that when EL = EG (hE) the dispersion analysis will lead to [25] with to: = 0 
if 

E = a G t z  L [27] 

If we generalize the above and assume 

EL = EG = aG aLf(aG,po/pL,  (VG - VL)/V~, L S )  [28] 

with f still an unspecified function of magnitude greater than or equal to one then the 
dispersion analysis for the mean flow equations [1], [2], [21] and [22] will lead to 

to (vo - vL) 
k --  -V~, -~- ~ ~ / ( f - 1 ) ( a  G pLXaL Po). [29] 

It thus appears that there is an infinite variety of functional forms for E~ and EL that will 
render the mean motion equations stable with kinematic wave speeds near vM. 

C. General remarks concerning speculative closure models 
The velocity correlation models cannot be obtained from any basic physical principle. 

In the end they are constitutive equations that must be determined by recourse to experi- 
mental results, t The above discussion only shows some possible correlation models [19], 
[20] that are consistent with the physics of the situation. Within these possible models, [28] 
gives a model that leads to stable mean motion equations in the streaming flow situation. 
The specific functional forms for EG and EL or ( f )  could be determined by experimental 
observations on the speed of large scale mean motion waves or numerical simulations to 
directly calculate v'v'. 

6. CONCLUSION 

It has been demonstrated (by arguments parallel to those used in standard multidi- 
mensional turbulence modeling) that the flow instabilities present in the mean motion 
equations of two-phase flow can be explained as a result of the failure to include appropriate 
closure models for the velocity fluctuations in the momentum equations. If these terms are 
neglected unstable mean flow equations are exactly what one should expect and what one 
obtains. Local flow instabilities remain in the mean flow equations used to describe turbulent 
flow fields if the Reynolds stress terms are neglected. 

Although the exact nature of the closure model in [19], [20] (or as further specified in 
[28]) is very approximate in nature and experimental work must be done in this area, it 
can be said that the total picture presented is very reasonable. The basic form of the algebraic 
closure model for the velocity correlations in [8] is on firm theoretical ground. The analysis 
has shown that an approximate model for the velocity correlations based upon the closure 
form in [8] can lead to a reasonable mean flow description--a mean flow description that 

t Constitutive equations that depend upon the phasic properties and the nature of the flow field. 
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does not manifest the local Helmholtz instability. The resulting mean flow equations are 
also hyperbolic in nature and do not manifest any of the problems associated with complex 
characteristics. 
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APPENDIX A 

One dimensional spacially averaged two-phase flow equations ~ A derivation 
In this appendix we will derive the one-dimensional equations that result from a spacial 

averaging of the local fluid equations. This derivation will be carried out for the mechanical 
case only, i.e. the thermal energy equations will not be developed. The development will 
also assume that there is no mass transfer between the phases. 

The spacially averaged equations can be derived in one of two ways. The local partial 
differential equations can be spacially intergrated over a control volume. Then by applying 
the Reynolds transport theorem and the divergence theorem in their various forms these 
averaged equations can be cast into the desired form. A second method is to start with the 
balance equations in their integral form. The local equations in a rigorous development are 
always derived from the integral forms in the first place. We will develop the averaged 
equations from the integral forms of the basic balance laws written for a moving control 
volume. In the following, the averaged equations for the liquid phase will be developed. 
Parallel equations hold for the gas phase. 

We consider a stratified flow in a pipe with x denoting the axial coordinate. The pipe 
has diameter D and cross-section area A. About each point x a control volume VL(x,t)will 
be constructed. This control volume will consist of all the liquid in the pipe between the 
planes x-L~2, x + L I 2  where L is of the order of the pipe diameter, (See figure 1.) The 
total volume inside the pipe between planes x - L/2, x + L / 2  will be denoted by V. The 
sudace of VL(x,t) will be denoted by SL(x,t). SL(x,t) is further specified as the sum of (1) 
SL~(x,t) which denotes that part of SL(X,t) on the interface between the liquid and gas phase; 
(2) SLL(X,t), which denotes that part of SL(x,t) occupied by the liquid; and (3) SLw(x,t) which 
denotes that part of SL(X,t) bounded by the pipe wall. 
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L/S = [ :  L/2 - ~  

SLLI I VL SLL l Liquid phose 
L . . . .  SLW J 

Figu re  I. Typica l  con t ro l  volume.  

The integral form of the conservation of mass principle for the moving control volume 
VL(x,t) is 

r.Cp,dr] ÷ fp,(u,-uS).ndS=O , 

at L-v,~,,) j =,,=,) 
[A-l] 

where u" is the velocity of the moving control volume surface and n is the outward unit 
normal vector. Now on the wall, SLw, we have UL = U ~ = O. O n  S ~ ( x , t )  we have u'  = 0. 
Since we are considering the situation with zero mass transfer, UL equals u'  on SLo(X,t). 

With the above values for u ~, [A-1] reduces to 

f pL dV ] + f pLuL. n dS = O 
8 t "vL(~t)  J " $ , ,  (x,t) 

[A-2] 

Since n = ( 1 , 0 , 0 )  on the forward face of S ~  and (--1,0,0) on the rearward face we can 
rewrite the second integral in [A-2] as 

fsPL ULI d S  - -  .rPLULI d~  
(forward) v $~L (rearward) 

It  is a simple matter to show from the definition of a derivative (for a reference, see Slattery 
(1972)) that 

_, rr,.u., ,.] 
ax L- g£(=,) - $ , . . ~ )  -$ - ,~ . . r~ )  

[A-3] 

Combining [A-2] and [A-3] we get 

- -  -- P L d g  + w  _ PLULI = 0 , [A-4] 
a t V (~t) i)x L v . ,  v,,~t, 

where we have divided by the constant volume V. Defining the liquid void fraction aL as 
V L / V  this can be written as 

a _ 8 
(a,  p,)  + - -  (a,p-?~,)  = o , [A-5] 

8X 

where a superposed bar indicates the operation 

- -  1 f ~dv, 
Ip(x,t) = -~L(X, t) "vL~.,) 

and is called the phasic average of 9- For an incompressible liquid [A-5] reduces to 
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a ( : I L D L  "q- a a L D L  YL - -  0 , [A-6] 
at ~x 

where vL is the average phasic liquid velocity. This completes the derivation of the spacially 
averaged mass balance equations [1] and [2] of the text. 

The intergral form of the liquid momentum equation in the axial direction for the 
moving control volume VL (X,t) is 

/' L "  VLtx, t) "*SL(X-t) St(x,t) 
[A-7] 

The body forces are assumed zero and the surface forces consist of a pressure PL and viSCOUS 
stresses o'f, Here PL is the local pressure even though in the text it denotes the phasic 
average pressure. Using the appropriate values of us on the respective subsurfaces of SL(x,t) 
we can reduce [A-7] 

0/I." Vdx,t) "StL(x-t) " SL( x- t) 
[A-S] 

Divide [A-8] by the fixed volume Vand apply the same arguments that were used between 
[A-2] and [A-3] to the second term on the left and we can rewrite [A-8] as 

A(aLp-7" L,) + - -  (aLpLU ,U   ) = 
a t Ox V"sL(~,) 

[A-9] 

We now consider the applied surface force terms on the fight hand side of [A-9]. The 
viscous terms are 

_1 f,  o-§ nj dS . 
V st.z(:~t) + su(~a + SL~:~t) 

[A-IO] 

This integral over SLL gives the normal viscous forces on the forward and rearward faces 
of SL. The integral over S u  is the viscous interface drag terms that are usually modeled 
using interface drag correlations. The integral over SLw is the viscous wall shear force and 
is also usually modeled using drag correlations. In any case the equations used in the text 
generally neglect all these viscous effects (see remarks before [1]) and they are not developed 
further here. 

We now turn to the surface pressure term on the right side of [A-9]. This term can 
be written as 

! f_p , , ,  dS = i f _ p , , ,  dS + 1=f-P,, ,  d S  . 

V " sL(x-t) Va s,,(~.t) ga su(~,) + s,w(x-o 
[A-Ill 

Using the steps between [A-2] and [A-3] the first term reduces to 

--a-~-(aLP L) [A-12] 
0x 

The second term in [A-11] denoted by I can be reduced further. Let Pu  be the average 
interface pressure on Su  then using mean value theorem one obtains 

V SLI(X,I) "t- SLW(X,t) 

if we remember that n, is zero in SLW. To the above formula for / we add and subtract 
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to obtain 

[-, 
I = PLI V Ix, t) Y"S,-,t~t) J [A-14] 

If the divergence theorem is applied to the first term on the right hand side of [A-14] we 
see that this term is zero, i.e. 

f --n1 d S  - ~ a--(-t) d V  = 0 
Vl.~t) 

We now apply the steps between [A-2] and [A-3] again to the remaining term in [A-14] to 
obtain 

I ---- Pu  a°tL [A-15] 
ax  

Combining the above evaluations for the right hand side of [A-9] we can write the spatially 
average momentum equation as 

a__ (aL PLUL) + i~ (aLPLULtULI) = -- aOt~aL + PLI aaL [A-16] 
at ax ax ax 

For the incompressible case considered in the text [A-16] reduces to 

a. (aLPLVL)  "4- a_~ a a t P L  q. PL! atxL [A-17] Ot Ox (CI'LpLIILIldLI) = ~.,~ ~,x ' 

where PL now denotes the liquid phase average pressure and VL is the average phasic velocity. 
By standard arguments it is known that 

ldLlglLI ----" VLP L dr" VLV ' , [A-18] 

where v~ = UL, -- ULt; hence [A-17] reduces to 

a .  _ ~OLL ~ L VL arl L Pl. aOt L 
"2-(GLLPL VL ) "3t- "31- ~OLLPL VtL VtL = "~ PLI [A-19] 
~t ~x ax ax 

Using the mass balance [A-6] to simplify the first two terms in [A-19] results in [4] of the 
text. This completes the derivation of the spacially averaged momentum equations for the 
assumptions stated in the text. 

A few remarks on averaging may be appropriate at this point. Whether one performs 
spacial averaging (as one always must do to get a one-dimensional model), temporal av- 
eraging, or joint spacial temporal averaging one obtains formally the sanae averaged equation. 
The various terms are subject to different meanings, especially the cross-correlation terms. 
The closure models used by various authors in single-plume flow tend to blur the various 
meanings in the closure step. For the case considered here, incompressible fluid with no 
mass transfer the relationship between spacial and time averages can be clearly elaborated. 

In the exact analysis of the two-dimensional case (see appendix 13) the only wave 
propagation present in the unaveraged situation is the kinematic waves with speed I" M given 
as the real part of the expression in [B-5]. Since there is only one mechanism of dynamic 
wave propagation all wave lengths h are related to their corresponding frequencies f by 
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f h  = I'M , [A-20] 

at least in the case of a small amplitude linear analysis. This being the case the above 
averaging over a spatial volume of length L clearly removes all wavelength phenomena for 
wavelengths less than L. Equation [A-20] then shows that this spacial averaging also removes 
all waves with frequency larger than f = VM/L. The above spatial averaging will also 
"damp" or "filter" wavelength phenomena of the order 1L to 3L. The corresponding 
frequencies are also damped. Wavelengths larger than 3L or 4L are clearly preserved in 
the averaged equation hence from [A-20] frequencies lower than VM/6L will also be well 
modeled in our spacially averaged equation. If there were multiple dynamic phenomena 
present in the basic unaveraged equations then the relationship between wavelength and 
frequency is dependent upon what phenomena are being examined and the clear one-to- 
one relationship of [A-20] does not hold. In this ease more care is needed when comparing 
the spacially averaged equations with their temporally averaged counterparts. 

APPENDIX B 

Stability analysis for the two.dimensional Helmholtz problem between confined plates 
The conventional inviscid equations of multidimensional fluid dynamics are used in 

this appendix to analyze the behavior of separated two-phase flow between parallel plates. 
The validity of the basic equations (for inviscid flow) is well established, so that results of 
the analysis can be used to cheek the predictions of the one-dimensional, two-phase equations 
if the frictional effects are neglected. 

As in the text the fluids are assumed incompressible. The motion of small perturbations 
about a uniform steady state solution is examined. The necessary mathematical development 
differs only slightly from that in Article 232 of Lamb (1945) and hence wilt not be given 
in detail. Instead, only the modifications of Lamb's development which are necessary to 
treat the present case are indicated. 

The modification is to allow for the finite depth of the two fluids by replacing the 
factors e ky and e -ky in Lamb's equation [5] by the factors cosh [k (y + Hct~)] and cosh 
[k (y  - Hat)] ,  respectively. The equations which then result for the axial velocities, the 
interface height, and the dispersion relationship are (in the notation of the present paper) 

u~ = v~ + Hctoi (to + v~k) cosh [k (y  - Ha~)] ei(.,,+~, ) [B-l] 
sinh (kHan) 

UL = VL - H a d ( t o  + vLk) cosh [k (y  + Haz),ei(,t+k~)] , 
sinh (k//aL) 

[B-2] 

y = H c t o  e a,,-+~) , [a-3] 

p~ coth(kHa~)(to + v~k) 2 -~- pLeoth(k/'lrtXL)(to -+- v£k) 2 = 0 [~.4] 

Equations [B-l] through [B-4] determine the exact solution for the physical problem under 
consideration. The explicit solution of the dispersion relationship [15-4] for ¢0 yields. 

o V_, , , ,  
k -  +p~ 1 ( p ~ + p ~ ) '  ' 

where 

P~ = Pc eoth (kHa¢), P]~ --- PL coth(kHaL). [B-6] 


